Ultraviolet-Visible Spectroscopy

• Introduction to UV-Visible
 ➤ Absorption spectroscopy from 160 nm to 780 nm
 ➤ Measurement of transmittance
 ➤ Conversion to absorbance
 * \[A = -\log T = \varepsilon bc \]

• Measurement of transmittance and absorbance
• Beer’s law
• Noise
• Instrumentation
Measurement

• Scattering of light
 ✈ Refraction at interfaces
 ✈ Scatter in solution
 ➤ Large molecules
 ➤ Air bubbles
• Normalized by comparison to reference cell
 ✈ Contains only solvent
 ➤ Measurement for transmittance is compared to results from reference cell
Beer’s Law

• Based on absorption of light by a sample

$dP_x / P_x = dS / S$

$\Rightarrow dS / S = \text{ratio of absorbance area to total area}$

* Proportional to number of absorbing particles

$\Rightarrow dS = adn$

* a is a constant, dn is number of particles

n is total number of particles within a sample
Beer’s Law

• Area S can be described by volume and length
 - $S = V/b$ (cm2)
 - Substitute for S
 - $n/V = \text{concentration}$
 - Substitute concentration and collect constant into single term ε

• Beer’s law can be applied to mixtures
 - $A_{\text{tot}} = \Sigma A_x$
Beer’s Law Limitations

- Equilibrium shift
 - pH indicators
 - Need to consider speciation
 - Weak acid equilibrium
Beer’s Law Limitation

- Polychromatic Light
 - More than one wavelength

![Graph showing absorbance vs. wavelength and absorbance vs. concentration with different bands and concentration levels.

\[\varepsilon_1 = 1000 \quad \varepsilon_2 = 1000 \]
\[\varepsilon_1 = 1500 \quad \varepsilon_2 = 500 \]
\[\varepsilon_1 = 1750 \quad \varepsilon_2 = 250 \]
Noise

- Limited readout resolution
- Dark current and electronic noise
- Photon detector shot noise
- Cell position uncertainty
 - Changing samples
- Flicker
Instrumentation

• Light source
 • Deuterium and hydrogen lamps
 • W filament lamp
 • Xe arc lamps

• Sample containers
 • Cuvettes
 • Plastic
 • Glass
 • Quartz
Spectrometers
Spectrometer

Time separated double beam
Spectrometer

Polychromatic source

Lens

Sample

Photodiode array

Grating

Dip probe

Multichannel photodiode array
Application of UV-Visible Spectroscopy

• Identification of inorganic and organic species
• Widely used method

• Magnitude of molar absorptivities
• Absorbing species
• methods
Molar Absorptivities

• Range from 0 to 1E5
 ✓ ε=8.7E19PA
 ➤ P=transition probability
 ➤ A=target cross section (cm²)
 * Allowed transitions 0.1>P>1
 ε range 1E4 to 1E5
 * Forbidden transition 0.01

• Absorbing species
 ✰ M+γ->M*
 ➤ M* has a short lifetime (nanoseconds)
 ➤ Relaxation processes
 * Heat
 * Photo emission
 Fluorescence or phosphorescence
Absorbing species

- **Electronic transitions**
 - π, σ, and n electrons
 - d and f electrons
 - Charge transfer reactions

- π, σ, and n (non-bonding) electrons

![Diagram of electron labels: $\bullet = \sigma$, $\times = \pi$, $\circ = n$]
Sigma and Pi orbitals

(a) σ orbital
(b) π orbital
(c) σ^* orbital
(d) π^* orbital
Electron transitions

Diagram showing electron transitions between different energy levels.
Transitions

- $\sigma \rightarrow \sigma^*$
 - UV photon required, high energy
 - Methane at 125 nm
 - Ethane at 135 nm

- $n \rightarrow \sigma^*$
 - Saturated compounds with unshared e-
 - Absorption between 150 nm to 250 nm
 - ε between 100 and 3000 L cm$^{-1}$ mol$^{-1}$
 - Shifts to shorter wavelengths with polar solvents
 * Minimum accessibility
 - Halogens, N, O, S
Transitions

• n->π*, π→π*

⚠️ Organic compounds, wavelengths 200 to 700 nm

⚠️ Requires unsaturated groups

➡️ n->π* low ε (10 to 100)

* Shorter wavelengths

➡️ π→π* higher ε (1000 to 10000)
Solvent effects
Transitions

- d-d
 - 3d and 4d 1st and 2nd transitions series
 - Broad transitions
 - Impacted by solution
Transitions
D transitions

- Partially occupied d orbitals
 - Transitions from lower to higher energy levels
 - Splitting of levels due to spatial distribution

Similar

Axial direction

8-22
D transitions

- Binding ligands on axis have greater effect on axial orbitals
D transitions

- Δ value dependent upon ligand field strength
 - <Br-<Cl-<F-<OH-<C2O42-~H2O<SCN-<NH3<en<NO2-<CN-
 - Δ increases with increasing field strength

- f-f
 - 4f and 5f (lanthanides and actinides)
 - Sharper transitions
Figure 2: UV-vis spectra of organic phases for 13M HNO₃ system
Charge-transfer Transitions

- Electron donor and acceptor characteristics
 - Absorption involves e⁻ transitions from donor to acceptor
 - SCN to Fe(III)
 - Fe(II) and neutral SCN
 - Metal is acceptor
 - Reduced metals can be exception
Electronic Spectra

- **Cr(NH$_3$)$_6^{3+}$**
 - d3
 - Weak low energy transition
 - Spin forbidden
 - 2 stronger transitions
 - Spin allowed
 - t$_{2g}$ and e$_g$ transitions
 - Lower energy to higher energy
 - CT at higher energy
 - Ligand to metal transition
Charge transfer bands

- **High energy absorbance**
 - Energy greater than d-d transition
 - Electron moves between orbitals
 * Metal to ligand
 * Ligand to metal
 - Sensitive to solvent

- **LMCT**
 - High oxidation state metal ion
 - Lone pair ligand donor

- **MLCT**
 - Low lying pi, aromatic
 - Low oxidation state metal
 - High d orbital energy
Solvent effect

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Approximate Transparency Minimum (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>190</td>
</tr>
<tr>
<td>Ethanol</td>
<td>210</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>195</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>210</td>
</tr>
<tr>
<td>Benzene</td>
<td>280</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>210</td>
</tr>
<tr>
<td>Acetone</td>
<td>330</td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td>220</td>
</tr>
</tbody>
</table>
Methods

• Titration
 ➤ Change of absorbance with solution variation
 ➤ pH, ligand, metal

• Photoacoustic effect
 ➤ Emission of sound